当前位置:简历谷 >

热点 >教师文案 >

向量的教案5篇

向量的教案5篇

教案不仅仅是一份计划,还是教育实践的反映和指南,教案包含了教材选择和使用的详细说明,以便教师能够有效地传授知识,下面是本站小编为您分享的向量的教案5篇,感谢您的参阅。

向量的教案5篇

向量的教案篇1

一、教学内容分析

1、教学主要内容

(1)平面向量数量积及其几何意义

(2)用平面向量处理有关长度、角度、直垂问题

2、教材编写特点

本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。

3、教学内容的核心教学思想

用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。

4、我的思考

本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。

二、学生分析

1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形

a·b=∣om∣·∣ob∣=∣b∣cosθ∣a∣

即a·b=∣a∣∣b∣cosθ理解并记忆。

对于cosθ= ,等的变形应用,同学们甚感兴趣。

2、我的思考

对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。

三、 学习目标

1、知识与技能

(1)掌握平面向量数量积及其几何意义。

(2)平面向量数量积的应用。

2、过程与方法

通过学生小组探究学习,讨论并得出结论。

3、情感态度与价值观

培养学生运算推理的能力。

四、教学活动

内容 师生互动 设计意图 时间 1、课题引入 师:请同学请回忆我们所学过的相关同里的运算。

生:加法、减法,数乘

师:这些运算所得的结果是数还是向量。

生:向量。

师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。 3min 2、平面向里的数量积定义 师:平面向星数量积(内积或点积)的定义:

已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab

②o与任何向量的数里积为o。 直接给出定义,可以让学习对新知识的求知数得到满足,并对新知识的探究有一个方向性。 5min 3、几何意义 师:同学们猜想

a·b=∣a∣∣b∣cosq

用图怎么表示

生:a·b=∣a∣·∣b∣cosθ

=∣om∣·∣ob∣

师:数里积a·b等于a的长度与b在a方向上的投影∣b∣cosθ的面积。

师:请同学们讨论数量积且有哪些性质

通过自己画图培养学生把问题转化到图形上,到图形上解决问题的能力。

5min 性 质 师:同学们a·b为非零向果,a·b=∣a∣·∣b∣cosθ。当θ=0°,90°,180°时,a·b有什么性质呢。

生:①当θ=90°时

a·b= a·b=∣a∣·∣b∣cosθ

②当a与b同向时

即θ= 0° ,则a·b=∣ a∣·∣b∣

当a与b反向时,

即θ= 180°,则a·b=∣ a∣·∣b∣

特别a·a=∣ a∣2 成 ∣ a∣= a·a

③∣a∣·∣b∣≤∣ a∣ ∣b∣

学生自己的探究性质,体会并深入理解向里数量的运算性质。 8min 生:①a·b= b·a(交换)

②(λa)·b=λ (a·b)

向量的教案篇2

教材分析:

教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。

向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。这些结论可以看成是定义的直接推论。

教材例一是对数量积含义的直接应用。

学情分析:

前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

三维目标:

(一)知识与技能

1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。

2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。

(二)过程与方法

1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。

(三)情感态度价值观

1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。

2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.

四、教学重难点:

1、重点:平面向量数量积的概念、性质的发现论证;

2、难点:平面向量数量积、向量投影的理解;

五、教具准备:多媒体、三角板

六、课时安排:1课时

七、教学过程:

(一)创设问题情景,引出新课

问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义

新课:

1、探究一:数量积的概念

展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型

背景的第一次分析:

问题:真正使汽车前进的力是什么?它的大小是多少?

答:实际上是力 在位移方向上的分力,即 ,在数学中我们给它一个名字叫投影。

“投影”的概念:作图

定义:| |cos(叫做向量 在 方向上的投影.投影也是一个数量,不是向量;

2、背景的第二次分析:

问题:你能用文字语言表述“功的计算公式”吗?

分析: 用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?

向量的教案篇3

向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。

一、总体设想:

本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。

二、教学目标:

知识和技能:

使学生了解向量的数量积的抽象根源。

使学生理解向是的数量积的概念:

两个非零向量的夹角;定义;本质;几何意义。

使学生了解向量的数量积的运算律

掌握向量数量积的主要变化式: ;

过程与方法:

从物理中的物体受力做功,提出向量的夹角和数量积的概念,然后给出两个非零向量的夹角和数量积的一般概念,并强调它的本质;接着给出两个向量的数量积的几何意义,提出一个向量在另一个向量方向上的投影的概念。

给出向量的数量积的运算律,并通过例题具体地显示出来。

由数量积的定义式,变化出一些特例。

情感、态度和价值观:

使学生学会有效学习:抓住知识之间的逻辑关系。

三、重、难点:

?重点】数量积的定义,向量模和夹角的计算方法

?难点】向量的数量积的几何意义

四、教学方案及其设计意图:

平面向量的数量积,是解决垂直、求夹角和线段长度问题的关键知识,其源自对受力物体在其运动方向上做功等物理问题的抽象。于是在引导学生学平面向量数量积的概念时,要围绕物理方面已有的知识展开,这是使学生把所学的新知识附着在旧知识上的绝好的机会。(如图)首先说明放置在水平面上的物体受力f的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力f的所做的功为w ,这里的(是矢量f和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。以此为基础引出了两非零向量a, b的数量积的概念: , 是记法, 是定义的实质――它是一个实数。按照推理,当 时,数量积为正数;当 时,数量积为零;当 时,数量积为负。

向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分: 。此概念也以物体做功为基础给出。 是向量b在a的方向上的投影。

向量的教案篇4

两个非零向量夹角的概念

已知非零向量a与b,作 =a, =b,则∠aob=θ(0≤θ≤π)叫a与b的夹角.

, 是记法, 是定义的实质――它是一个实数。按照推理,当 时,数量积为正数;当 时,数量积为零;当 时,数量积为负。

“投影”的概念

定义:|b|cos(叫做向量b在a方向上的投影。

投影也是一个数量,它的符号取决于角(的大小。当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 |b|;当( = 180(时投影为 (|b|. 因此投影可正、可负,还可为零。

根据数量积的定义,向量b在a方向上的投影也可以写成

注意向量a在b方向上的投影和向量b在a方向上的投影是不同的,应结合图形加以区分。

向量的数量积的几何意义:

数量积a(b等于a的长度与b在a方向上投影|b|cos(的乘积.

向量数量积的几何意义在证明分配律方向起着关键性的作用。其几何意义实质上是将乘积拆成两部分: 。此概念也以物体做功为基础给出。 是向量b在a的方向上的投影。

两个向量的数量积的性质:

设a、b为两个非零向量,则

(1) a(b ( a(b = 0;

向量的教案篇5

规定:零向量与任一向量的数量积为0,即 =0

注意:

(1)符号“ ”在向量运算中既不能省略,也不能用“×”代替。

(2) 是 与 的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。

(3)两个向量的数量积是一个数量,而不是向量。而且这个数量的大小与两个向量的模及其夹角有关。

(4)两非零向量 与 的数量积 的符号由夹角θ决定:

cosθ

= cosθ = 0

cosθ

前面我们学习了向量的加法、减法及数乘运算,他们都有明确的几何意义,那么向量的数量积的几何意义是什么呢?

二、数量积的几何意义

“投影”的概念:已知两个非零向量 与 ,θ是 与 的夹角,| |cos( 叫做向量 在 方向上的投影

思考:投影是向量,还是数量?

根据投影的定义,投影当然算数量,可能为正,可能为负,还可能为0

|(为锐角 (为钝角 (为直角

| |cos( | |cos( | |cos(=0

当(为锐角时投影为正值;当(为钝角时投影为负值;当(为直角时投影为0;当( = 0(时投影为 | |;当( = 180(时投影为 (| |

思考: 在 方向上的投影是什么,并作图表示

数量积的几何意义:数量积 等于 的长度| |与 在 方向上投影| |cos(的乘积,也等于 的长度| |与 在 方向上的投影| |cos(的乘积。

根据数量积的定义,可以推出一些结论,我们把它们作为数量积的重要性质

三、数量积的重要性质

设 与 都是非零向量,θ是 与 的夹角

  • 文章版权属于文章作者所有,转载请注明 https://jianligu.com/redian/jiaoshiwenan/083wg6.html
专题